Last data update: 2014.03.03

R: spg Projection Functions
projectR Documentation

spg Projection Functions

Description

Projection function implementing contraints for spg parameters.

Usage

     projectLinear(par, A, b, meq)

Arguments

par

A real vector argument (as for fn), indicating the parameter values to which the constraint should be applied.

A

A matrix. See details.

b

A vector. See details.

meq

See details.

Details

The function projectLinear can be used by spg to define the constraints of the problem. It projects a point in R^n onto a region that defines the constraints. It takes a real vector par as argument and returns a real vector of the same length.

The function projectLinear incorporates linear equalities and inequalities in nonlinear optimization using a projection method, where an infeasible point is projected onto the feasible region using a quadratic programming solver. The inequalities are defined such that: A %*% x - b > 0 . The first ‘meq’ rows of A and the first ‘meq’ elements of b correspond to equality constraints.

Value

A vector of the constrained parameter values.

Note

We are grateful to Berwin Turlach for creating a special version of solve.QP function that is specifically tailored to solving the projection problem.

See Also

spg

Examples

# Example
fn <- function(x) (x[1] - 3/2)^2 + (x[2] - 1/8)^4

gr <- function(x) c(2 * (x[1] - 3/2) , 4 * (x[2] - 1/8)^3)

# This is the set of inequalities
# x[1] - x[2] >= -1
# x[1] + x[2] >= -1
# x[1] - x[2] <= 1
# x[1] + x[2] <= 1

# The inequalities are written in R such that:  Amat %*% x  >= b 
Amat <- matrix(c(1, -1, 1, 1, -1, 1, -1, -1), 4, 2, byrow=TRUE)
b <- c(-1, -1, -1, -1)
meq <- 0  # all 4 conditions are inequalities

p0 <- rnorm(2)
spg(par=p0, fn=fn, gr=gr, project="projectLinear", 
      projectArgs=list(A=Amat, b=b, meq=meq))

meq <- 1  # first condition is now an equality
spg(par=p0, fn=fn, gr=gr, project="projectLinear", 
      projectArgs=list(A=Amat, b=b, meq=meq))


# box-constraints can be incorporated as follows:
# x[1] >= 0
# x[2] >= 0
# x[1] <= 0.5
# x[2] <= 0.5

Amat <- matrix(c(1, 0, 0, 1, -1, 0, 0, -1), 4, 2, byrow=TRUE)
b <- c(0, 0, -0.5, -0.5)

meq <- 0
spg(par=p0, fn=fn, gr=gr, project="projectLinear", 
   projectArgs=list(A=Amat, b=b, meq=meq))

# Note that the above is the same as the following:
spg(par=p0, fn=fn, gr=gr, lower=0, upper=0.5)


# An example showing how to impose other constraints in spg()

fr <- function(x) { ## Rosenbrock Banana function
  x1 <- x[1] 
  x2 <- x[2] 
  100 * (x2 - x1 * x1)^2 + (1 - x1)^2 
  } 

# Impose a constraint that sum(x) = 1

proj <- function(x){ x / sum(x) }

spg(par=runif(2), fn=fr, project="proj") 

# Illustration of the importance of `projecting' the constraints, rather 
#   than simply finding a feasible point:

fr <- function(x) { ## Rosenbrock Banana function 
x1 <- x[1] 
x2 <- x[2] 
100 * (x2 - x1 * x1)^2 + (1 - x1)^2 
} 
# Impose a constraint that sum(x) = 1 

proj <- function(x){ 
# Although this function does give a feasible point it is 
#  not a "projection" in the sense of the nearest feasible point to `x'
x / sum(x) 
} 

p0 <- c(0.93, 0.94)  

# Note, the starting value is infeasible so the next 
#   result is "Maximum function evals exceeded"

spg(par=p0, fn=fr, project="proj") 

# Correct approach to doing the projection using the `projectLinear' function

spg(par=p0, fn=fr, project="projectLinear", projectArgs=list(A=matrix(1, 1, 2), b=1, meq=1)) 

# Impose additional box constraint on first parameter

p0 <- c(0.4, 0.94)    # need feasible starting point

spg(par=p0, fn=fr,  lower=c(-0.5, -Inf), upper=c(0.5, Inf),
  project="projectLinear", projectArgs=list(A=matrix(1, 1, 2), b=1, meq=1)) 


Results


R version 3.3.1 (2016-06-21) -- "Bug in Your Hair"
Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BB)
> png(filename="/home/ddbj/snapshot/RGM3/R_CC/result/BB/project.Rd_%03d_medium.png", width=480, height=480)
> ### Name: project
> ### Title: spg Projection Functions
> ### Aliases: projectLinear
> ### Keywords: multivariate
> 
> ### ** Examples
> 
> # Example
> fn <- function(x) (x[1] - 3/2)^2 + (x[2] - 1/8)^4
> 
> gr <- function(x) c(2 * (x[1] - 3/2) , 4 * (x[2] - 1/8)^3)
> 
> # This is the set of inequalities
> # x[1] - x[2] >= -1
> # x[1] + x[2] >= -1
> # x[1] - x[2] <= 1
> # x[1] + x[2] <= 1
> 
> # The inequalities are written in R such that:  Amat %*% x  >= b 
> Amat <- matrix(c(1, -1, 1, 1, -1, 1, -1, -1), 4, 2, byrow=TRUE)
> b <- c(-1, -1, -1, -1)
> meq <- 0  # all 4 conditions are inequalities
> 
> p0 <- rnorm(2)
> spg(par=p0, fn=fn, gr=gr, project="projectLinear", 
+       projectArgs=list(A=Amat, b=b, meq=meq))
iter:  0  f-value:  11.99853  pgrad:  1.859255 
$par
[1] 1 0

$value
[1] 0.2502441

$gradient
[1] 5.551115e-17

$fn.reduction
[1] 11.74829

$iter
[1] 1

$feval
[1] 2

$convergence
[1] 0

$message
[1] "Successful convergence"

> 
> meq <- 1  # first condition is now an equality
> spg(par=p0, fn=fn, gr=gr, project="projectLinear", 
+       projectArgs=list(A=Amat, b=b, meq=meq))
iter:  0  f-value:  11.99853  pgrad:  0.8592554 
$par
[1] 0 1

$value
[1] 2.836182

$gradient
[1] 0

$fn.reduction
[1] 9.162349

$iter
[1] 1

$feval
[1] 2

$convergence
[1] 0

$message
[1] "Successful convergence"

> 
> 
> # box-constraints can be incorporated as follows:
> # x[1] >= 0
> # x[2] >= 0
> # x[1] <= 0.5
> # x[2] <= 0.5
> 
> Amat <- matrix(c(1, 0, 0, 1, -1, 0, 0, -1), 4, 2, byrow=TRUE)
> b <- c(0, 0, -0.5, -0.5)
> 
> meq <- 0
> spg(par=p0, fn=fn, gr=gr, project="projectLinear", 
+    projectArgs=list(A=Amat, b=b, meq=meq))
iter:  0  f-value:  11.99853  pgrad:  0.5 
$par
[1] 0.5000000 0.1145664

$value
[1] 1

$gradient
[1] 4.543266e-06

$fn.reduction
[1] 10.99853

$iter
[1] 7

$feval
[1] 8

$convergence
[1] 0

$message
[1] "Successful convergence"

> 
> # Note that the above is the same as the following:
> spg(par=p0, fn=fn, gr=gr, lower=0, upper=0.5)
iter:  0  f-value:  11.99853  pgrad:  0.5 
$par
[1] 0.5000000 0.1145664

$value
[1] 1

$gradient
[1] 4.543266e-06

$fn.reduction
[1] 10.99853

$iter
[1] 7

$feval
[1] 8

$convergence
[1] 0

$message
[1] "Successful convergence"

> 
> 
> # An example showing how to impose other constraints in spg()
> 
> fr <- function(x) { ## Rosenbrock Banana function
+   x1 <- x[1] 
+   x2 <- x[2] 
+   100 * (x2 - x1 * x1)^2 + (1 - x1)^2 
+   } 
> 
> # Impose a constraint that sum(x) = 1
> 
> proj <- function(x){ x / sum(x) }
> 
> spg(par=runif(2), fn=fr, project="proj") 
iter:  0  f-value:  9.888397  pgrad:  0.2925466 
$par
[1] 0.6186303 0.3813697

$value
[1] 0.1456207

$gradient
[1] 1.533979e-06

$fn.reduction
[1] 9.742776

$iter
[1] 8

$feval
[1] 9

$convergence
[1] 0

$message
[1] "Successful convergence"

> 
> # Illustration of the importance of `projecting' the constraints, rather 
> #   than simply finding a feasible point:
> 
> fr <- function(x) { ## Rosenbrock Banana function 
+ x1 <- x[1] 
+ x2 <- x[2] 
+ 100 * (x2 - x1 * x1)^2 + (1 - x1)^2 
+ } 
> # Impose a constraint that sum(x) = 1 
> 
> proj <- function(x){ 
+ # Although this function does give a feasible point it is 
+ #  not a "projection" in the sense of the nearest feasible point to `x'
+ x / sum(x) 
+ } 
> 
> p0 <- c(0.93, 0.94)  
> 
> # Note, the starting value is infeasible so the next 
> #   result is "Maximum function evals exceeded"
> 
> spg(par=p0, fn=fr, project="proj") 
iter:  0  f-value:  0.568901  pgrad:  0.002673382 
$par
[1] 0.4973262 0.5026738

$value
[1] 0.568901

$gradient
[1] 0.003780733

$fn.reduction
[1] 0

$iter
[1] 1

$feval
[1] 1

$convergence
[1] 2

$message
[1] "Maximum function evals exceeded"

Warning message:
In spg(par = p0, fn = fr, project = "proj") : Unsuccessful convergence.
> 
> # Correct approach to doing the projection using the `projectLinear' function
> 
> spg(par=p0, fn=fr, project="projectLinear", projectArgs=list(A=matrix(1, 1, 2), b=1, meq=1)) 
iter:  0  f-value:  0.568901  pgrad:  52.24003 
$par
[1] 0.6187956 0.3812044

$value
[1] 0.145607

$gradient
[1] 1.670886e-07

$fn.reduction
[1] 0.423294

$iter
[1] 5

$feval
[1] 9

$convergence
[1] 0

$message
[1] "Successful convergence"

> 
> # Impose additional box constraint on first parameter
> 
> p0 <- c(0.4, 0.94)    # need feasible starting point
> 
> spg(par=p0, fn=fr,  lower=c(-0.5, -Inf), upper=c(0.5, Inf),
+   project="projectLinear", projectArgs=list(A=matrix(1, 1, 2), b=1, meq=1)) 
iter:  0  f-value:  61.2  pgrad:  0.27 
$par
[1] 0.5000000 0.4999999

$value
[1] 6.499997

$gradient
[1] 5.960464e-08

$fn.reduction
[1] 54.7

$iter
[1] 1

$feval
[1] 2

$convergence
[1] 0

$message
[1] "Successful convergence"

> 
> 
> 
> 
> 
> 
> 
> dev.off()
null device 
          1 
>