R: Perform parameter estimation using a genetic algorithm...
parEstimationLBodeGA
R Documentation
Perform parameter estimation using a genetic algorithm (package genalg).
Description
This function uses a genetic algorithm (package genalg) to perform parameter estimation. The objective function
is the same as the one provided by getLBodeContObjFunction.
A list containing the experimental design and data.
model
The logic model to be simulated.
ode_parameters
A list with the ODEs parameter information. Obtained with createLBodeContPars.
indices
Indices to map data in the model. Obtained with indexFinder function from CellNOptR.
mutationChance
the chance that a gene in the chromosome mutates. By default 1/(size+1). It affects
the convergence rate and the probing of search space: a low chance results
in quicker convergence, while a high chance increases the span of the search
space.
popSize
the population size.
iters
the number of iterations.
elitism
the number of chromosomes that are kept into the next generation. By default is
about 20% of the population size
time
An integer with the index of the time point to start the simulation. Default is 1.
monitor
If TRUE a plot will be generated to monitor the objective function
verbose
A logical value that triggers a set of comments.
transfer_function
The type of used transfer. Use 1 for no transfer function, 2 for Hill function and
3 for normalized Hill function.
reltol
Relative Tolerance for numerical integration.
atol
Absolute tolerance for numerical integration.
maxStepSize
The maximum step size allowed to ODE solver.
maxNumSteps
The maximum number of internal steps between two points being sampled before
the solver fails.
maxErrTestsFails
Specifies the maximum number of error test failures permitted in attempting
one step.
nan_fac
A penalty for each data point the model is not able to simulate. We recommend higher than
0 and smaller that 1.
initial_state
initial state of the dynamic nodes (non-measured) (Defaults to 0.1)
Value
LB_n
A numeric value to be used as lower bound for all parameters of type n.
LB_k
A numeric value to be used as lower bound for all parameters of type k.
LB_tau
A numeric value to be used as lower bound for all parameters of type tau.
UB_n
A numeric value to be used as upper bound for all parameters of type n.
UB_k
A numeric value to be used as upper bound for all parameters of type k.
UB_tau
A numeric value to be used as upper bound for all parameters of type tau.
default_n
The default parameter to be used for every parameter of type n.
default_k
The default parameter to be used for every parameter of type k.
default_tau
The default parameter to be used for every parameter of type tau.
LB_in
An array with the the same length as ode_parameters$parValues with lower bounds
for each specific parameter.
UB_in
An array with the the same length as ode_parameters$parValues with upper bounds
for each specific parameter.
opt_n
Add all parameter n to the index of parameters to be fitted.
opt_k
Add all parameter k to the index of parameters to be fitted.
opt_tau
Add all parameter tau to the index of parameters to be fitted.
random
A logical value that determines that a random solution is for the parameters
to be optimized.
res
A list containing the information provided by the nonlinear optimization solver (genalg).