Last data update: 2014.03.03

R: Dynamically Visualized Continuous Probability Distributions...
DynConR Documentation

Dynamically Visualized Continuous Probability Distributions and Their Moments

Description

This function is aimed at dynamically visualizing continuous probability distributions and their moments when the parameters changed.

Usage

DynCon(name, par_matrix, total = c(100, 100), choice = "cdf", 
interval = 0.05, const_par = c(NULL, NULL))

Arguments

name

A discrete probability distribution that you want to plot.

par_matrix

A matrix shows the ranges of the parameters. The column number of the matrix indicates the number of parameters in the distribution and the row number of the matrix is 2 for all the distributions. The first column shows the range for the first parameter, the second column accordingly show the ranges for the second parameter in distributions. All the elements in the first row indicate the minimum for the parameters and those in the second row show the maximum ones.

total

A vector and its elements indicate the step length for parameters by order, with the default value c(100,100).

choice

A vector and its elements indicate the plot you want to show, with a default value "cdf".

interval

A value to show the speed of changing plots.

const_par

A vector and its elements indicate the value of the parameters that do not change.

Details

For name, you can choose among Continuous Uniform('Con_Uniform'), Normal('Normal'), Chi-Square('Chi_Square'), F('F_dis'), Student's t('Student_t'), Exponential('Exponential'), Gamma('Gamma_dis'), Beta('Beta_dis'), Laplace('Laplace'), Logistic('Logistic'), Lognormal('Lognormal'), Pareto('Pareto'), Cauchy('Cauchy'), Inverse Gaussian('Inverse_Gaussian'), Rayleigh('Rayleigh'). For choice, you can choose among Cumulative Probability Function('cdf'), Mean('Mean'), Variance('Variance'), Mode('Mode'), Skewness('Skewness') and Kurtosis('Kurtosis').

More details about distributions and parameters are as follows:

Beta: Beta distribution. Shape parameters a, b, a>0, b>0.

Cauchy: Cauchy distribution. Location parameter a. Scale parameter b, b>0.The order of parameters is a, b. See Note Below.

Con_Uniform: Continuous Uniform distribution. Location parameter a, the lower bound of the range. Parameter b, the upper bound of the range. The order of parameters is a, b. See Note Below.

Chi_Square: Chi-squared Distribution. Shape parameter n, degrees of freedom.

Exponential: Exponential Distribution. The scale parameter b, b>0.

F_Dis: F(central) Distribution. Shape parameters m, n, positive integers.

Gamma: Gamma distribution. Shape parameter a, a>0.Scale parameter b, b>0.The order of parameters is a, b. See Note below.

Inverse_Gaussian: Inverse Gaussian (Wald) distribution. Scale parameter lamda, lamda>0. Location parameter mu, mu>0. The order of parameters is lamda,mu. See Note below.

Laplace: Laplace distribution. Location parameter a. Scale parameter b, b>0.The order of parameters is a, b. See Note below.

Logistic: Logistic distribution. Location parameter a, scale parameter b, b>0.The order of parameters is a, b. See Note below.

Lognormal: Lognormal distribution. Scale parameter mu, mu>0.Shape parameter sigma, sigma>0.The order of parameters is mu, sigma. See Note below.

Normal: Normal distribution. Location parameter mu. Scale parameter sigma, sigma>0. The order of parameters is mu, sigma. See Note below.

Pareto: Pareto distribution. Location parameter a, a>0.shape parameter b, b>0.The order of parameters is a, b. See Note below.

Rayleigh: Rayleigh distribution. Scale parameter b>0.

Student_t:Student's t distribution. Shape parameter n, degrees of freedom, n is a positive integer.

Value

A dynamic graph which includes probability density function graph and 'choice' graph.

Note

When you assign the parameter matrix to the argument par_matrix , you must follow the input sequence of parameters.

Author(s)

Lei ZHANG, Hao JIANG and Chen XUE (Equally contributed, the order is decided by the time the author joined the project.)

References

K. Krishnamoorthy(2006) Handbook of Statistical Distributions with Applications University of Louisiana at Lafayette.

Examples

DynCon(name=Lognormal,par_matrix=matrix(c(0,2,1,2),2,2),
choice='cdf',const_par=c(0,1))

DynCon(name=Inverse_Gaussian,par_matrix=matrix(c(1,12,10,20),2,2)
,choice='Kurtosis',const_par=c(2,3))

DynCon(name=Exponential,par_matrix=matrix(c(1,20),2,1),choice=
'Skewness')

DynCon(name=Normal,par_matrix=matrix(c(1,20,10,20),2,2),choice=
'Variance',const_par=c(0,1))

DynCon(name=Logistic,par_matrix=matrix(c(1,12,10,20),2,2),choice
='Kurtosis',const_par=c(2,3))

Results


R version 3.3.1 (2016-06-21) -- "Bug in Your Hair"
Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(DynamicDistribution)
> png(filename="/home/ddbj/snapshot/RGM3/R_CC/result/DynamicDistribution/DynCon.Rd_%03d_medium.png", width=480, height=480)
> ### Name: DynCon
> ### Title: Dynamically Visualized Continuous Probability Distributions and
> ###   Their Moments
> ### Aliases: DynCon
> 
> ### ** Examples
> DynCon(name=Lognormal,par_matrix=matrix(c(0,2,1,2),2,2),
+ choice='cdf',const_par=c(0,1))
> 
> DynCon(name=Inverse_Gaussian,par_matrix=matrix(c(1,12,10,20),2,2)
+ ,choice='Kurtosis',const_par=c(2,3))
> 
> DynCon(name=Exponential,par_matrix=matrix(c(1,20),2,1),choice=
+ 'Skewness')
> 
> DynCon(name=Normal,par_matrix=matrix(c(1,20,10,20),2,2),choice=
+ 'Variance',const_par=c(0,1))
> 
> DynCon(name=Logistic,par_matrix=matrix(c(1,12,10,20),2,2),choice
+ ='Kurtosis',const_par=c(2,3))
> 
> 
> 
> 
> 
> dev.off()
null device 
          1 
>