Last data update: 2014.03.03

R: plot cross validation mean square error
plot.HDcvlarsR Documentation

plot cross validation mean square error

Description

plot cross validation mean square error

Usage

## S3 method for class 'HDcvlars'
plot(x, ...)

Arguments

x

Output from HDcvlars function.

...

graphical parameters

Author(s)

Quentin Grimonprez

Examples

dataset=simul(50,10000,0.4,10,50,matrix(c(0.1,0.8,0.02,0.02),nrow=2))
result=HDcvlars(dataset$data,dataset$response,5)
plot(result)

Results


R version 3.3.1 (2016-06-21) -- "Bug in Your Hair"
Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(HDPenReg)
Loading required package: rtkore
Loading required package: Rcpp

Attaching package: 'rtkore'

The following object is masked from 'package:Rcpp':

    LdFlags

> png(filename="/home/ddbj/snapshot/RGM3/R_CC/result/HDPenReg/plot.HDcvlars.Rd_%03d_medium.png", width=480, height=480)
> ### Name: plot.HDcvlars
> ### Title: plot cross validation mean square error
> ### Aliases: plot.HDcvlars
> 
> ### ** Examples
> 
> dataset=simul(50,10000,0.4,10,50,matrix(c(0.1,0.8,0.02,0.02),nrow=2))
> result=HDcvlars(dataset$data,dataset$response,5)
> plot(result)
> 
> 
> 
> 
> 
> dev.off()
null device 
          1 
>