Last data update: 2014.03.03

R: Fit the semi-parametric negative binomial mixed-effect AR(1)...
fitSemiAR1R Documentation

Fit the semi-parametric negative binomial mixed-effect AR(1) model.

Description

This function fits the semi-parametric negative binomial mixed-effect AR(1) model in the formulation described Zhao et al (2013). The conditional distribution of response counts given random effect is modelled by Negative Binomial as described in description of lmeNB. The conditional dependence among the response counts of a subject is modeled with AR(1) structure. The semiparametric procedure is employed for random effects. See descriptions of lmeNB.

Usage


fitSemiAR1(formula, data, ID, Vcode,p.ini = NULL, IPRT = TRUE, deps = 0.001, maxit=100)

Arguments

formula

See lmeNB.

data

See lmeNB.

ID

See lmeNB.

Vcode

See lmeNB.

p.ini

See fitParaAR1.

IPRT

See lmeNB.

deps

See lmeNB.

maxit

See lmeNB.

Details

The algorithm repeats the following four steps until a stoping criterion is satisfied:

Step 1) Estimate the coefficients of covariates by the method of weighted least squares.

Step 2) Approximate the distribution of the random effect G[i] by γ[i].

Step 3) Estimate α and δ using the psudo-profile likelihood. This step calls optim to minimize the negative psudo log-likelihood with respect to log(α)) and logit(δ). The numerical integration is carried out using adaptive quadrature. When missing visits are present, the likelihood is approximated (See Zhao et al. 2013 for details).

Step 4) Estimate Var(G[i]) by the medhod of moment and update the weights.

All the computations are done in R.

Author(s)

Zhao, Y. and Kondo, Y.

References

Detection of unusual increases in MRI lesion counts in individual multiple sclerosis patients. (2013) Zhao, Y., Li, D.K.B., Petkau, A.J., Riddehough, A., Traboulsee, A., Journal of the American Statistical Association.

See Also

The main function to fit the Negative Binomial mixed-effect model: lmeNB,

The functions to fit the other models: fitParaIND, fitParaAR1, fitSemiIND,

The subroutines of index.batch to compute the conditional probability index: jCP.ar1, CP1.ar1, MCCP.ar1, CP.ar1.se, CP.se, jCP,

The functions to generate simulated datasets: rNBME.R.

Examples


## Not run: 
## ================================================================================ ##
## generate a data based on the semi-parametric negative binomial 
## mixed-effect AR(1) model.
## Under this model, the response counts follows the negative binomial:
## Y_ij | G_i = g_i ~ NB(r_ij,p_i) where r_ij = exp(X^T beta)/a , p_i =1/(a*g_i+1)
## G_i is from unknown distribution.
## For simulation purpose, we generate the sample of gi from 
## the mixture of three gamma distribuions.

## The adjacent repeated measures of the same subjects are correlated 
## with correlation structure:
## cov(Y_ij,Y_ij'|G_i=g_i)=d^{j-j'} E(Y_ij')*(a*g_i^2+g_i)  

# log(a) = -0.5, log(th)=1.3, logit(delta) = -0.2
# b0 =  0.5, no covariates; 
loga <- -0.5
logtheta <- 1.3
logitd <- -0.2
b0 <- 0.5
# 80 subjects each with 5 scans
n <- 80
sn <- 5

## generate a sample of size B from the mixture of three gamma distribution:
p1 <- 0.5  
p2 <- 0.3
B <- 1000
sampledG<- c(
rgamma(n=p1*B,scale=1,shape=10),
rgamma(n=p2*B,scale=3,shape=5),
rgamma(n=(1-p1-p2)*B,scale=5,shape=5)
)


## mean is set to 1;
sampledG <- sampledG/mean(sampledG) 
logvarG <- log(var(sampledG))
## hist(sampledG)

DT4 <-  rNBME.R(gdist = "NoN",
               n = n, ## 	the total number of subjectss	       
	       sn = sn,
               u1 = rep(exp(b0),sn),
	       u2 = rep(exp(b0),sn),
	       a = exp(loga),
	       d = exp(logitd)/(1+exp(logitd)),
	       othrp = sampledG
	      )
Vcode<-rep(-1:(sn-2),n) # scan number -1, 0, 1, 2, 3
ID <- DT4$id
new <- Vcode > 0
dt4<-data.frame(CEL=DT4$y)
## ================================================================================ ##

## [1] Fit the negative binomial mixed-effect AR(1) model 
## where random effects is from the gamma distribution


re.gamma.ar1 <- fitParaAR1(formula=CEL~1,data=dt4,ID=ID,
		         Vcode=Vcode, 
		          p.ini=c(loga,logtheta,logitd,b0), 
		          ## log(a), log(theta), logit(d), b0
		          RE="G", 
		          IPRT=TRUE)

Psum<-index.batch(olmeNB=re.gamma.ar1, data=dt4,ID=ID,Vcode=Vcode,
	          labelnp=new,qfun="sum", IPRT=TRUE,i.se=FALSE) 



## [2] Fit the negative binomial mixed-effect AR(1) model 
## where random effects is from the log-normal distribution


re.logn.ar1<-fitParaAR1(formula=CEL~1,data=dt4,ID=ID,
		        Vcode=Vcode, 
		        p.ini=c(loga,logtheta,logitd,b0), 
		        ## log(a), log(theta), logit(d), b0
		        RE="N", IPRT=TRUE)

## Requires some time
Psum<-index.batch(olmeNB=re.logn.ar1,data=dt4,ID=ID,Vcode=Vcode,
	          labelnp=new,qfun="sum", IPRT=TRUE) 



## [3] Fit the negative binomial independent model 
## where random effects is from the lognormal distribution
re.logn.ind<-fitParaIND(formula=CEL~1,data=dt4,ID=ID, 
                        RE="N", 			   	
		        p.ini=c(loga,logtheta,b0), 		
		        IPRT=TRUE)

Psum <- index.batch(olmeNB=re.logn.ind,data=dt4,ID=ID,
                    labelnp=new,qfun="sum", IPRT=TRUE) 


## [4] Fit the semi-parametric negative binomial AR(1) model 
## This model is closest to the true model

logvarG <- log(var(sampledG))

re.semi.ar1 <- fitSemiAR1(formula=CEL~1,data=dt4,ID=ID, 
                          p.ini=c(loga, logvarG, logitd,b0),Vcode=Vcode)
 
## compute the estimates of the conditional probabilities 
## with sum of the new repeated measure as a summary statistics 
Psum <- index.batch(olmeNB=re.semi.ar1, labelnp=new,data=dt4,ID=ID,Vcode=Vcode,
                    qfun="sum", IPRT=TRUE,i.se=TRUE) 

## compute the estimates of the conditional probabilities 
## with max of the new repeated measure as a summary statistics 
Pmax <- index.batch(olmeNB=re.semi.ar1, labelnp=new,qfun="max",data=dt4,ID=ID,Vcode=Vcode,
                    IPRT=TRUE,i.se=TRUE) 

## Which patient's estimated probabilities 
## based on the sum and max statistics disagrees the most?
( IDBigDif <- which(rank(abs(Pmax$condProbSummary[,1]-Psum$condProbSummary[,1]))==80) )
## Show the patient's CEL counts  
dt4$CEL[ID==IDBigDif]
## Show the estimated conditional probabilities based on the sum summary statistics
Psum$condProbSummary[IDBigDif,1]
## Show the estimated conditional probabilities based on the max summary statistics
Pmax$condProbSummary[IDBigDif,1]


## [5] Fit the semi-parametric negative binomial independent model 


re.semi.ind <- fitSemiIND(formula=CEL~1,data=dt4,ID=ID, p.ini=c(loga, logvarG, b0))
Psum <- index.batch(olmeNB=re.semi.ind, labelnp=new,
                    data=dt4,ID=ID, qfun="sum", IPRT=TRUE,i.se=TRUE) 



## ======================================================================== ##
## == Which model performed the best in terms of the estimation of beta0 == ##
## ======================================================================== ##

getpoints <- function(y,estb0,sdb0=NULL,crit=qnorm(0.975))
{	
points(estb0,y,col="blue",pch=16)
if (!is.null(sdb0))
{
points(c(estb0-crit*sdb0,estb0+crit*sdb0),rep(y,2),col="red",type="l")
}
}
ordermethod <- c("gamma.ar1","logn.ar1","logn.ind","semi.ar1","semi.ind")

estb0s <- c(
re.gamma.ar1$est[4,1],
re.logn.ar1$est[4,1],
re.logn.ind$est[3,1],
re.semi.ar1$est[4],
re.semi.ind$est[3]
)

## The true beta0 is:
b0
c <- 1.1
plot(0,0,type="n",xlim=c(min(estb0s)-0.5,max(estb0s)*c),ylim=c(0,7),yaxt="n",
main <- "Simulated from the AR(1) model \n with random effect ~ a semi-parametric distribution")

legend("topright",
	legend=ordermethod)
abline(v=b0,lty=3)

## [1] gamma.ar1
sdb0 <- re.gamma.ar1$est[4,2]
getpoints(6,estb0s[1],sdb0)

## [2] logn.ar1
sdb0 <- re.logn.ar1$est[4,2]
getpoints(5,estb0s[2],sdb0)

## [3] logn.ind
sdb0 <- re.logn.ind$est[3,2]
getpoints(4,estb0s[3],sdb0)

## [4] semi.ar1
getpoints(3,estb0s[4])

## [5] semi.ind
getpoints(2,estb0s[5])


## End(Not run)

Results