Last data update: 2014.03.03

R: Self-concordant empirical likelihood for a vector mean
emplikR Documentation

Self-concordant empirical likelihood for a vector mean

Description

Self-concordant empirical likelihood for a vector mean

Usage

emplik(dat, mu = rep(0, ncol(dat)), lam = rep(0, ncol(dat)),
  eps = 1/nrow(dat), M = 1e+30, thresh = 1e-30, itermax = 100)

Arguments

dat

n by d matrix of d-variate observations

mu

d vector of hypothesized mean of dat

lam

starting values for Lagrange multiplier vector, default to zero vector

eps

lower cutoff for -log, with default 1/nrow(dat)

M

upper cutoff for -log.

thresh

convergence threshold for log likelihood (default of 1e-30 is agressive)

itermax

upper bound on number of Newton steps.

Value

a list with components #'

  • logelr log empirical likelihood ratio.

  • lam Lagrange multiplier (vector of length d).

  • wts n vector of observation weights (probabilities).

  • conv boolean indicating convergence.

  • niter number of iteration until convergence.

  • ndec Newton decrement.

  • gradnorm norm of gradient of log empirical likelihood.

Author(s)

Art Owen, C++ port by Leo Belzile

References

Owen, A.B. (2013). Self-concordance for empirical likelihood, Canadian Journal of Statistics, 41(3), 387–397.

Results